AP Experiments: Spin-off and Selected Results in Run-5

H. Huang

AP Ex: motivation, goals

GOALS

- Improve machine performance (longer time scale than 'now' machine performance) Class1
- Luminosity, upgrade (RHIC-II) Class 1.5?
- Development of beam diagnostics techniques
- Inter-lab collaborations
- Class 2 (nothing happened so far)

RUN5

- >Start of experimental activities towards RHIC upgrades
- Limited start of Class-2 experiments (didn't happen)

AP Experiment Categories

Class:

- **0:** likely to immediately benefit RHIC machine performance, or crucial to RHIC hardware decisionmaking
- 1: directly benefiting RHIC machine performance
- 2: benefiting general accelerator community

Priority:

- A: a) benefiting RHIC operation; b) well prepared; and c) likely to succeed
- **B:** has at least two of the above three
- C: has at least one of the above three
- **D:** none of the above

AP Ex Program: Run 2005

Decoupling on the ramp

AC dipole (coupling)

Pressure rise, e-cloud (NEG, new limits)

Stochastic cooling

Nonlinear (tune spread, IRs)

Beta* squeeze and measurement

Higher order IR corrections

Beam-beam

Polarization

PLL experiments

Schottky

IBS

Cryo Jitter

RHIC II

eRHIC

Y. Luo

M. Bai

S.Y.Zhang

M. Blaskiewicz

V. Ptitsyn

F. Pilat

F. Pilat/Y. Luo/N. Malitsky

Tomas/Fischer/Malitsky

H. Huang/M. Bai

P.Cameron

K. Vetter

Wei/Fedotov

C. Montag

V. Litvinenko (?)

V. Ptitsyn

New AP Experiments in 2005

- 1. Anti-grazing rings to study effect on beam loss induced desorption and aperture limitation(P. Theberger, SY).
- 2. Jet optical signals to study the jet cleanness and beam property (N. Luciano, Dejan)
- 3. Stochastic cooling (Mike)
- 4. IBS suppression lattice (Vladimir).
- 5. Electron cooling related experiments (Ilan).

Highlights of AP Ex. in Run 05

- IBS suppression lattice
- Beta* squeeze at BRAHMS
- Snake Resonance Spectrum
- Transition Study
- Jet camera
- Stochastic cooling
- Decoupling
- IBS measurements
- Beam Based Alignment
-

AP Ex. List for 2005

05.04	Transition	Dt 14		_				40
05-01	Pressure Rise 10 Hz beam jitter	Ptitsyn	0	В		proposed	instability study?	18
	as function of He				l			
05-02	flow	Montag	1	В	2h @end	proposed	end of run	
	M easurement							
	and minimization of local coupling							
	at store using							
05-03	AC dipoles	Tomas	1	В	??	needs resubmissi	on	
	Emittance measurement							
05-04	using Schottky	Bai, Kurt, Tepikiar	0+1	В	(para)+2	proposed		
	Molecular				,			
	desorption							
	under perpendicular							
05-05	impact	Fischer	2	В	2 (Cu) +2 (p)	proposed		
05-06	Transverse Echoes	Fischer	_	В	3 (Cu)+3 (p)	proposed		
	Snake	Fischer	1	В	3 (Cu)+3 (p)	proposed		
	Resonance							
05-07	Spectrum	Bai, Roser	1	В	4+4 (p)	proposed		
	Surviving							
05-08	electrons in gaps	Drees, Jimenez	1		FY06	proposed		
05-09	10 Hz IR orbit feedback test		o	В	2+2	l		
05-09	Emittance	Montag	0	В	2+2	proposed		
	growth due to 10							
0 5- 10	Hz beam jitter	Montag	1	A	1+1	proposed	end of store	
	Skew Quadrupole							
05-11	Modulations	Luo, Pilat	0	A	2+2	proposed		
	PLL phase loop test for global							
05-12	decoupling	Cameron, Luo	1	В	(para)+2	proposed		
	Transverse							
05-13	Impedance Localization	M acKay	_	C	3+3	proposed	need to link with 0	4.08
05-13	Characterization	Mackay	1	-	3+3	proposed	need to link with 0	4-08
	of Cold Bore							
05-14	Pressure Rise Beta star	Hseuh	0	A	2+2 (05-26)	proposed	merge with 05-26	
05-15	squeeze at store	Pilat	0	В	2+2 (Cu) 2+2 (p)	proposed		
	IP optics							
05-16	measurement Skew	Luo	1	A	(para)	proposed		
05-17	Chromaticity II	Tepikian	1	C	2	proposed		
	Suppression of			C				
0.5-18	transverse IBS	Litvinenko	0	C	8hx2	proposed	more time likely ne	eaea
	Feasibility Study							
. =	of Beam-based							
0 5- 19	Alignment in the Difference	Cameron, Kewish	1	В	2h	proposed		
	between							
05-20	coherent and incoherent tune	Cameron, Wilinski	_	В	(nore)	nronood		
03-20	High Frequency	Carrieron, wiiniski	<u>'</u>	-	(para)	proposed		
	Schottky							
05-21	Calibration Evaluation of	Vetter	0	В	2h	proposed	link to 05-04	
	anti-grazing							
05-22	ridge	Zhang	1	В	2+2	proposed		
05-23	NEG pipe evaluation	Huang	1		2hx4	proposed		
05-24	beam scrubbing	Huang	1	C	8h (p)	proposed	need to extend to	cold section
05-25	of the 3rd order	Pilat, Ptitsyn	1	В	3hx2	proposed		
	Evaluation of							
05-26	electron Cloud in the RHIC arcs	Irieo	o	A	(05-26)	proposed	merge with 05-14	
05-26	Intrabeam	Iriso	0	 ^	(05-26)	proposed	Therge with 05-14	
	scattering							VÜRAJEN
05-27	coupling dependence	Wei	1	A	6h	proposed	BROQ	-RΠMV CN
05-27	beam based	vvei	<u>'</u>	 ^	811	proposed		LABORATOR
	alignment of				1		NATIONAL	LABORATOR
05-28	sextupole	Satogata	О	В	2h	proposed		

IBS Suppression Lattice

Bunch Length in Two Ramps

Transverse Emittances

Regular lattice

IBS suppression lattice

IBS at Store in Blue

Wolfram, Alexei, Rob, SteveT, RogerC

- •Various intensity bunches
- •Emittance, bunch length measured over time

IBS at Injection and Store

β* Squeeze for BRAHMS

Fulvia, Todd, Nikolay, Mei, Steve

Ready to be used for operation

β* Measurement with AC Dipole

Rough estimate due to uncertainty of NEG pumping speed and gauge calibration

 $\eta_{Cu} \ll \eta_{Au}$ at normal incidence (IR12 gage valves)

η_{Forward} >> η_{backward}

Au desorption is more localized at the gate valves

NEG Evaluation

Effectiveness of anti-grazing ridges and NEG coating

BO11 & BI9 have NEG coating

6248 (Feb 23) # 6343 (Mar 7) (VP, HH, SY, PH, DH) ΔP only at BO11 pw3.3 and BI9 pw3.1 (difficult to estimate η w/ NEG due to large pumping speed provided by NEG)

No observable pressure rise at BI5 (NEG + ridges)

η w/o NEG coating is higher especially at large Θ and at yo12 polarimeter (high P_0)

Anti-Grazing Ridge

- •BO6 desorption yield η proportional to 1/sinΘ?
- •Ridges at YO5 reduce n at small O with desorption yield similar to that of gate valves
- •BI5 (ridges + NEG) shows no ΔP at all

Summary:

 $\eta \sim 4e+2$ for $\Theta = 90^{\circ}$ (Cu on IR12 valves)

 $\eta \ge e+3$ for $\Theta = \sim mrad$ (YO12, BO3...)

Ridges helps η (YO5 vs. BO6)

NEG coating helps η (BI5 vs. YO5 and BO6; BI9 and BO11 vs BO3)

 $\eta_{P}(e+2) < \eta_{Cu}(e+3) < \eta_{Au}(e+4)$

Should we keep them but reduce their sizes (ones near Q3)?

Estimation of Physical Aperture

Vadim,...)

NATIONAL LABORATORY

- Yellow horizontal -> 8 o'clock triplet
- Yellow vertical -> the anti-grazing ridge (6 o'clock)
- Blue horizontal -> the anti-grazing ridge
- Blue vertical -> either 7 o'clock triplet or the anti-grazing ridge

Nonlinear Chromaticity at Store

Steve, Vadim

Study the 0.7 Snake Resonance at Gγ=63

Polarimeter Physics

Other APEX

ZDC calibration

Loss Map for collimator development

Echo experiment

Non-linear IR correction

Schottky Calibration

Dispersion vs. Crossing Angle

Beam-Beam vs transverse separation

Optics IP2 for pp2pp

IPM test

APEX in 2005

- Date moved to Monday day time now.
- BmEx Advanced to APEX.
- Most APEXs went through the AEAC for approval. There are few exceptions.
- The starting time becomes a flexible one during pp period.
- The APEX schedule is more or less a routine now. We have less or no complain from other experimenters.
- 12 hours/week is adequate for our current needs.
- Majority APEXs are RHIC operation oriented. Very few are for general accelerator physics.

